Search results for "CO oxidation"
showing 10 items of 11 documents
Metal-support and preparation influence on the structural and electronic properties of gold catalysts
2006
Abstract Nanostructured gold catalysts supported on CeO2 and SiO2 were prepared by the deposition–precipitation (DP) and the solvated metal atom dispersion (SMAD) techniques. The structural and electronic properties of the catalysts were investigated by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Gold was found as small metal nanoparticles (cluster size ∼2 nm) in the SMAD-prepared samples and in ionic state in the DP catalysts. The catalytic activity of the samples was tested in the reaction of low temperature CO oxidation. Gold nanosized particles in a pure metallic state exhibited a worse catalytic performance, both on ceria and…
Structure and the metal-support interaction of the Au/Mn oxide catalysts
2010
Gold catalysts with loading 1 and 10 wt % were-prepared by deposition precipitation method with urea over mesoporous manganese oxide, obtained through a surfactant-assisted procedure by using cetyltrimethylammonium bromide (CTAB), followed by treatment with sulphuric acid. For comparison, Au(10 wt %) was also deposited over commercial CeO2 and SiO2 supports. The materials were characterized by XRD and EXAFS at the Mn K and Au L-III edges and XPS. Moreover, the analyses were performed on the samples treated under 1%CO/He, at 250 degrees C for 90 min. The structural and surface results of the as prepared manganese oxide confirmed the formation of gamma-MnO2 along with some amorphous Mn3O4 upo…
The role of polaronic states in the enhancement of CO oxidation by single-atom Pt/CeO2
2023
Single Atom Catalysts (SACs) have shown that the miniaturization of the active site implies new phenomena like dynamic charge transfer between isolated metal atoms and the oxide. To obtain direct proof of this character is challenging, as many experimental techniques provide averaged properties or have limitations with poorly conductive materials, leaving kinetic measurements from catalytic testing as the only reliable reference. Here we present an integrated Density Functional Theory-Microkinetic model including ground and metastable states to address the reactivity of Pt1/CeO2 for CO oxidation. Our results agree with experimentally available kinetic data in the literature and show that CO…
DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX)
2022
Abstract The oxidation functionality of Mn(IV) sites has been assessed by density functional theory (DFT) analysis of adsorption and activation energies of CO, H2 and O2 on a model Mn4O8 cluster. DFT calculations indicate that Mn(IV) atoms prompt an easy CO conversion to CO2 via a reaction path involving both catalyst and gas-phase oxygen species, while much greater energy barriers hinder H2 oxidation. Accordingly, a MnCeOx catalyst (Mnat/Ceat, 5) with large exposure of Mn(IV) sites shows a remarkable CO oxidation performance at T ≥ 293 K and no H2 oxidation activity below 393 K. Empiric kinetics disclose that the catalyst-oxygen abstraction step determines both CO and H2 oxidation rate, al…
Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts
2018
3 Tablae, 14 Figures.-- Supplementary material.-- © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Dynamic Role of Gold d-Orbitals during CO Oxidation under Aerobic Conditions
2022
High-energy-resolution fluorescence detection-X-ray absorption near-edge structure (HERFD-XANES) at the Au L3 edge was used to study gold catalysts supported on ceria in order to unravel the role of gold 5d orbital modifications during the activation of molecular oxygen. The variations in the HERFD-XANES resonance peak, which are directly correlated with the d-band occupancy, were monitored in situ during the redox process of the CO oxidation at room temperature under both aerobic and anaerobic conditions. Interestingly, upon the oxidation treatment and also during the aerobic CO oxidation treatment, the gold d-band fluctuates around an average value, proving that the gold clusters are part…
CO Oxidation on Cationic Gold Clusters: A Theoretical Study
2008
Aiming at understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the reactivity of molecular species, such as O2 and CO, on neutral and positively charged Au13 clusters have been studied using a DFT approach. Two CO oxidation mechanisms have been simulated, involving respectively the adsorption of CO and O2 on adjacent catalytic sites (two-sites mechanism) and the competitive interaction of the reactants on the same site (single-site mechanism). It is demonstrated that in the former scheme a definite interaction of CO and O2 with both the charged and neutral cluster is effective, but that a chemical reaction between the adsorb…
Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels
2008
Catalyst supports of CeO 2 /SiO 2 and Al 2 O 3 with three-dimensionally ordered macroporous structure were fabricated in microchannels by application of PMMA opals as templates. Pt-Rh supported on CeO 2 /SiO 2 showed high efficiency for CO removal in preferential CO oxidation in the presence of excess hydrogen. Pt-Rh supported on Al 2 O 3 with an inverse opal structure showed higher reactivity than that supported on wash-coated Al 2 O 3 layers in microchannel reactor.
Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances
2012
In this work gold catalysts supported over SBA-15 with different CeO 2 loadings (5-30 wt%) were prepared, characterized by N 2 physisorption analyses, SAXS, XRD, STEM and XPS techniques and their catalytic performances were evaluated in the CO oxidation, chosen as reaction test. Over a selected catalyst, Au/CeO 2(20 wt%)-SBA-15, the effect of CO 2 and of the mixture (CO 2 + H 2O) on the CO conversion to CO 2 was also evaluated. Characterizations by SAXS, XRD, STEM and XPS were carried out on selected spent catalysts after CO oxidation. The results were discussed in terms of relationship between morphological, structural, electronic and catalytic properties as a function of the ceria loading…
Oxide-based nanomaterials for fuel cell catalysis:the interplay between supported single Pt atoms and particles
2017
The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a co…